Google
Support independent publishing: buy this book on Lulu.

Sunday, December 24, 2006

Scientific breaktrough of the year.

http://www.youtube.com/watch?v=kPgKXnL7g24





The influential magazine Science has determined that the solution of the Theorem of Poincare (1904), contributed by the Russian mathematician Grigori Perelman, former member of the Institute Steklov and the Russian Academy of Sciences, up to the 2005, is the scientific breaktrough of the 2006. In Ciencia (Grisha: cutting the singularities, to solve Poincare conjecture. August/18/2006), we publish an article in this respect. This year we agree with the proposal sponsored by Donald Kennedy (DK), Chief Editor of Science and the scientific journalist: Dane Mackenzie (DM), for 2 reasons: I) Because the alternating works, in Physics, Chemistry, Medicine (including, the Prizes Nobel: 2006), don't surpass the level of imperfect copies of the natural reality. Just the opposite, is the case of Perelman. The mathematical contributions -are not copies - they are creations of the human mind. Last year we differs with the scientific breakthrough 2005, proposed by DK. This year, we agree. Also, we value the sincerity of DK, when recognizing in the editorial page of Science that these elections can sometimes be influenced by political/religious debates, eventuality nonexistent this year and: II) The relevance of the work of Perelman that to begin and according to DM, suggests a multidisciplinary (mechanics of fluids, thermodynamics, surgery), approach. Poincaré conjectured in 1904 that a space of 3D, being a hypersphere, it would become the limits of another sphere of 4D. From then on, the spread studies to prove the conjecture, always smashed with singularities that blocked the equations.

Perelman approached the problem, making innovations to the Flow of Ricci ("Ricci Flow as to Gradient Flow", hanging 3 original papers, in the web), a process for which topological regions of high curvature flow inside others of low curvature, creating a numeric (entropy), gradient, always in increment during the flow, providing a direction ; a procedure that can be continued in an infinite way. The geometric common calculations usually work well in spaces of 2D, but in 3D or, 4D, small irregularities (singularities), in spatial connections, block the application of the usual rules. Perelman solved the problem, eliminating (with surgery), the singularities temporarily, adding them at the end, as an everything. Its work, allowed for the first time, to understand the structure of the singularities and its development. The human bodies for example, have 3D, but their surfaces alone 2D. The surfaces of 2D (limitless, rolled on themselves, like the skin), are distinguished among them for the number of surface holes. A surface without holes is equal to a sphere. With holes is a torus and so on. A sphere cannot be transformed into a torus and vice versa. The humans beings vaguely can see such spaces, but the mathematicians by means of symbolic notations can describe them and to explore their properties. Some mathematicians think that the work of Perelman, will bring bigger light to the studies of spaces of 3D, with same or bigger relevance to the one generated by the introduction of the Periodic Chart of Mendeleev in Chemistry. Also, it is expected it will gives more solid basement to certain evolutive equations (Navier Stokes/Dynamics of fluids, General Relativity of Einstein), powerful geometric machinery to transform hard working topological spaces, in other more governable ones.
Evento cientifico del 2006.

La influyente revista Science ha determinado que la solución del Teorema de Poincare (1904), aportada por el matematico ruso Grigori Perelman, ex miembro del Instituto Steklov y la Academia Rusa de Ciencias, hasta el 2005, amerita la denominación de suceso cientifico del 2006. En Ciencia, publicamos una semblanza al respecto. Este año coincidimos con la propuesta patrocinada por Donald Kennedy (DK), Editor Principal de Science y la periodista cientifica : Dane Mackenzie (DM), por 2 razones : I) Porque los trabajos alternos, en Fisica, Qumica, Medicina (incluyendo, los Premios Nobel : 2006), no sobrepasan el nivel de copias imperfectas de la realidad natural. Todo lo contrario, en el caso de Perelman. Las contribuciones matemáticas -no son copias- son creaciones de la mente humana. El año pasado discrepamos con el breakthrough cientifico 2005, propuesto por DK. Este año, si estamos de acuerdo. Asimismo, valoramos la sinceridad de DK, al reconocer en la página editorial de Science, que a veces las elecciones pueden estar influenciadas por debates politico/religiosos, eventualidad inexistente este año y : II) La relevancia del trabajo de Perelman, que para empezar y según DM, sugiere una imbricación multidisciplinaria (mecánica de fluidos, termodinámica, cirugía). Poincaré conjeturó en 1904, que un espacio de 3D, siendo una hiperesfera, devendria en el limite de otra esfera de 4D. Desde entonces, los estudios tendientes a probar la conjetura, siempre se estrellaban con singularidades, que interrumpian las ecuaciones.

Perelman abordó el problema, haciendo innovaciones al Flujo de Ricci ("Ricci Flow as a Gradient Flow", colgando 3 papers originales, en la web), un proceso por el cual regiones topológicas de alta curvatura fluyen dentro de otras de baja curvatura, creando un gradiente numérico (entropía), siempre en incremento durante el flujo, proporcionándole una dirección ; un procedimiento que puede ser continuado de modo infinito. Normalmente los cálculos geométricos comunes funcionan bien en espacios de 2D, pero en 3D o, 4D, pequeñas irregularidades (singularidades), en las conexiones espaciales, bloquean la aplicación de las reglas usuales. Perelman resolvió el problema, eliminando (cirugía), las singularidades temporalmente, añadiéndolas al final, como un todo. Su trabajo, permitió por primera véz, comprender la estructura de las singularidades y su desarrollo. Los cuerpos humanos, tienen por ejemplo 3D, pero sus superficies solo 2D. Las superficies de 2D (sin limites, arrolladas sobre si mismas, como la piel), se distinguen entre si por el número de agujeros superficiales. Una superficie sin agujeros equivale a una esfera. Con agujeros es un torus y asi. Una esfera no puede ser convertida en un torus y viceversa. Los humanos solo vagamente podemos ver tales espacios, pero los matemáticos mediante notaciones simbólicas pueden describirlas y explorar sus propiedades. Algunos matemáticos piensan que el trabajo de Perelman, traerá mayor luz a los estudios de espacios de 3D, con igual o mayor relevancia a la generada por la introducción de la Tabla Periódica de Mendeleev en Quimica. Asimismo, se espera dé fundamentos más sólidos a ciertas ecuaciones geométricas evolutivas (Navier Stokes/Dinámica de fluidos, Relatividad General de Einstein), poderosa maquinaria para transformar espacios topológicos dificiles de trabajar, en otros más manejables.


.

2 Comments:

Blogger Abal Abal said...

Thank you for another fantastic post
casino online | casino

11:12 PM  
Blogger Dhann Ria said...

Perfect site for downloading apps in mobiles free of cost ,nice blog Agen Sbobet | casino online

8:47 PM  

Post a Comment

<< Home