DARK MATTER, DARK ENERGY and BLACK HOLES
CHALLENGES ON THE BORDERS OF
SCIENCE and, HOW TO RESOLVE THEM.
1) Identify problems, choose
the main problem (the one that explains the rest). Develop a
hypothesis and test it. 2) Analyze the results, assessing the evidence. 3) New and
improved hypothesis. Questions and cross-questions to the maximum. Incorporation
of contributions and ideas from other scientific areas. New hypothesis and so
on, again and again.
Let's see 2 cases:
I) First case. Recognized as an interstellar object ("Oumuamua"), by the International
Astronomical Union, this entity discovered in October 2017, supposedly natural,
has been questioned by the astronomer Abraham Loeb (Harvard University,
Astronomy Deparment), given the pretty bizarre features of this, to be an
asteroid or a comet of our solar system : a)
when passing close to the earth the entity rotated on itself every 8 hours b) it has a brightness that changes by a factor of 10 c) It is 5 times longer than wide d) It does not emit much heat e) It is a good reflector of light, but poorly
conservative of it f) It does not absorb light well g) not much is known about its surface
because it has not been possible to take a clear close image of its surface h) The entity follows a path not governed by the sun's
gravity j) The entity exhibits an
extra force that drives it. Such kind of an object with unusual characteristics
and limited data, has forced Loeb to
propose several alternatives for it, instead of accepting it exclusively as a
natural entity, once again dividing an elite of world scientists: a minority
that argues that possessing such unusual
features, one possibility -within
several- is that it is an extraterrestrial probe launched by an intelligent
civilization, and another represented by scientists not so open minded to
ensure that it is a natural object and nothing more. An interdict on the very
frontier of science, whose arguments as always bring us back to Plato and
dialectics and whose final solution will once again be determined by the
evidence. A phenomenon like this with such unusual characteristics can be
anything, until it is proven otherwise.
From quantamagazine
II) The other case corresponds to the enigmatic subject of matter and dark energy and black holes, conforming 95% of our visible universe, for which the theoretical astrophysics of Yale University: Priyamvada Natarajan, has proposed to study them coherently, using various methods including the mapping of them. The central theoretical idea of the Indian astrophysics is to suppose that supermassive black holes are a fundamental part of the structure, the energetic area and the evolution of our universe, due to being located in the center of galaxies, determining the form and other characteristics of the galaxies. A very difficult subject to study located on the same frontier of science. How to demonstrate this theory if the mentioned phenomena are characterized by their invisibility. To face this challenge, the Natarajan, argues to have the stamina, mental clarity and above all know what she is doing aided by mathematical approaches, quite necessary in this case. 1) She says that one of the first things to do is to understand why all the current physics collapses when we are close to a black hole? auto answering she says:” you need a lot of mathematical support”. 2) She also argues that there is a certain relationship or interweaving between the mass of the stars in the central part of the galaxies and the central area of the black holes that host them, needing here approximations of theoretical physics, to know how to join the framework and early growths of these phenomena, simultaneously. 3) Regarding the mapping, the Natarajan argues that the Hubble telescope has provided incredible images to map and analyze dark matter, offering indirect images of this matter when estimating the extension and curvature of the light emitted by different distant galaxies. Adding: "But, not everything depends on the Hubble images. My maps need mathematical orientations especially when small clumps of dark matter are identified, which correlated perfectly with the cold, non-interactive dark matter". In images taken by the Hubble telescope of the cluster galaxy: MACS0416 and of the same image with superimposed blue distribution of dark matter, inferred from the distortion of light from distant galaxies (the background ones), it is observed how supermassive black holes could have initially formed at the center of galaxies. The scientist hopes that with larger telescopes it will be possible to identify bright quasars (luminous galactic centers), supplied by billions of solar masses and black holes, when the universe was only 10% of its current age. Part of the above is supported by the Natarajan in 2 articles (2005/2006), in which when lecturing on "massive seeds", she raised the extraordinary idea that it is possible to bypass the formation of a star forming instead seeds of massive black holes, of approximately 10,000 to 1 million times the mass of the sun, able to explain the emergence of quasars in very early times of our universe. 4) On the spiral forms of galaxies, Natarajan argues: “In the same way that when you pull the plug of the bathtub, the water forms a vortex, something similar happens in the early universe with the formation of gas discs, quickly positioning the gas siphon in the center". This direct collapse of "seeds of black holes" is part of a larger cosmic evolutionary history, subsequent to the generation of a population of black holes: how they form, evolve, turn into quasars, go out and shine until today. 5) The idea of the direct collapse of supermassive black holes (quasars of early times of the universe, fed by supermassive black holes), is today, a leading theory in the formation of the early universe, consensuated by successive small pieces of evidence. To support the above, in a computer simulation, the Natarajan successfully programmed the direct collapse of black holes: populated the early universe and propagated the growth of these galaxies until today. 6) The noted Hindu scientist, hopes that the James Webb Space telescope to be launched in 2021, observe the space deeply and backward in time, paying attention to the formation of galaxies of the early universe, facts that will test the idea of early collapse of the Natarajan. The James Webb telescope is able to see images of dark matter more accurately. Premonitorily, the Natarajan affirms that if the new telescope identifies quasars in the first epochs of the universe, these will have to be black holes with direct collapse.
From quantamagazine
II) The other case corresponds to the enigmatic subject of matter and dark energy and black holes, conforming 95% of our visible universe, for which the theoretical astrophysics of Yale University: Priyamvada Natarajan, has proposed to study them coherently, using various methods including the mapping of them. The central theoretical idea of the Indian astrophysics is to suppose that supermassive black holes are a fundamental part of the structure, the energetic area and the evolution of our universe, due to being located in the center of galaxies, determining the form and other characteristics of the galaxies. A very difficult subject to study located on the same frontier of science. How to demonstrate this theory if the mentioned phenomena are characterized by their invisibility. To face this challenge, the Natarajan, argues to have the stamina, mental clarity and above all know what she is doing aided by mathematical approaches, quite necessary in this case. 1) She says that one of the first things to do is to understand why all the current physics collapses when we are close to a black hole? auto answering she says:” you need a lot of mathematical support”. 2) She also argues that there is a certain relationship or interweaving between the mass of the stars in the central part of the galaxies and the central area of the black holes that host them, needing here approximations of theoretical physics, to know how to join the framework and early growths of these phenomena, simultaneously. 3) Regarding the mapping, the Natarajan argues that the Hubble telescope has provided incredible images to map and analyze dark matter, offering indirect images of this matter when estimating the extension and curvature of the light emitted by different distant galaxies. Adding: "But, not everything depends on the Hubble images. My maps need mathematical orientations especially when small clumps of dark matter are identified, which correlated perfectly with the cold, non-interactive dark matter". In images taken by the Hubble telescope of the cluster galaxy: MACS0416 and of the same image with superimposed blue distribution of dark matter, inferred from the distortion of light from distant galaxies (the background ones), it is observed how supermassive black holes could have initially formed at the center of galaxies. The scientist hopes that with larger telescopes it will be possible to identify bright quasars (luminous galactic centers), supplied by billions of solar masses and black holes, when the universe was only 10% of its current age. Part of the above is supported by the Natarajan in 2 articles (2005/2006), in which when lecturing on "massive seeds", she raised the extraordinary idea that it is possible to bypass the formation of a star forming instead seeds of massive black holes, of approximately 10,000 to 1 million times the mass of the sun, able to explain the emergence of quasars in very early times of our universe. 4) On the spiral forms of galaxies, Natarajan argues: “In the same way that when you pull the plug of the bathtub, the water forms a vortex, something similar happens in the early universe with the formation of gas discs, quickly positioning the gas siphon in the center". This direct collapse of "seeds of black holes" is part of a larger cosmic evolutionary history, subsequent to the generation of a population of black holes: how they form, evolve, turn into quasars, go out and shine until today. 5) The idea of the direct collapse of supermassive black holes (quasars of early times of the universe, fed by supermassive black holes), is today, a leading theory in the formation of the early universe, consensuated by successive small pieces of evidence. To support the above, in a computer simulation, the Natarajan successfully programmed the direct collapse of black holes: populated the early universe and propagated the growth of these galaxies until today. 6) The noted Hindu scientist, hopes that the James Webb Space telescope to be launched in 2021, observe the space deeply and backward in time, paying attention to the formation of galaxies of the early universe, facts that will test the idea of early collapse of the Natarajan. The James Webb telescope is able to see images of dark matter more accurately. Premonitorily, the Natarajan affirms that if the new telescope identifies quasars in the first epochs of the universe, these will have to be black holes with direct collapse.
DESAFÍOS
EN LAS FRONTERAS DE LA
CIENCIA y, COMO RESOLVERLOS.
1) Identificar problemas. Escoger el problema principal
(el que explique al resto de problemas). Elaborar una hipótesis y
someterla a prueba. 2) Analizar los resultados, valorando las evidencias. 3) Nueva
hipótesis, mejorada. Preguntas y repreguntas al máximo. Incorporación de
aportes e ideas de otras áreas científicas. Nueva hipótesis y así, una y otra
vez. Veamos 2 casos:
I) Reconocido
como un objeto interestelar (“Oumuamua”),
por la International Astronomical Union, este ente descubierto en octubre del
2017, supuestamente natural, ha sido puesto
en entredicho por el astrónomo Abraham Loeb (Harvard University, Astronomy
Deparment), dadas las características bastante bizarras de este, para
ser un asteroide o un cometa de nuestro sistema solar,
el mismo que : a) al pasar cerca
de la tierra rotaba sobre si cada 8 horas b)
que posee una brillantez que cambia por un factor de 10 c) que es 5 veces más largo
que ancho d) que no emite mucho calor e)
que es un buen reflector de la luz, pero mal conservador de ella f) que no absorbe bien la luz g) del que no se conoce
mucho sobre su superficie porque
no se ha podido tomarle una imagen cercana nítida h) que sigue un trayecto no gobernado
por la gravedad del sol i) que no es
influenciado por la gravedad del sol j) que exhibe una fuerza extra que lo impulsa.
Un objeto con características desusuales y con datos limitados, que ha obligado a Loeb a
proponer para este objeto varias alternativas, en vez de aceptarlo exclusivamente
como un ente natural, dividiendo una vez
más a una elite de científicos mundiales: una minoría que arguye que al poseer
características tan desusuales,
una posibilidad dentro de varias, es que
se trate de una sonda
extraterrestre lanzada por una civilización inteligente y, otra representada por científicos de mente no tan abierta que aseguran que se trata de un objeto natural y
nada más. Un entredicho en la misma frontera de la ciencia, cuyos argumentos
como siempre nos retrotraen a Platón y a los dialecticos y cuya solución final una
vez más será determinada por las evidencias. Un fenómeno como este con
características tan desusuales puede ser cualquier cosa, hasta que no se
demuestre lo contrario, claro. II) El
otro caso corresponde al enigmático asunto de la materia y energía oscura y los
agujeros negros, conformantes del 95% de nuestro universo visible, para los
cuales la astrofísica teórica de la Universidad de Yale: Priyamvada Natarajan,
se ha propuesto estudiarlos coherentemente, empleando
diversos métodos incluyendo el mapeo de los mismos. La idea teórica central de la astrofísica hindú
es suponer que agujeros negros supermasivos son parte fundamental de
la estructura, el área energética y la evolución de nuestro universo, en
razón de estar ubicados en el centro de las galaxias, determinando
la forma y otras características de las galaxias. Un tema bastante difícil de estudiar ubicado en
la misma frontera de la ciencia. Como demostrar esta teoría si los fenómenos mencionados
se caracterizan por su invisibilidad. Para
afrontar este desafío, la Natarajan, arguye disponer de la estamina, la claridad
mental y sobre todo saber lo que está haciendo ayudada por aproximaciones matemáticas
bastante necesarias en este caso. 1) Dice ella, que una de
las primeras cosas por hacer es entender ¿porque toda la física actual colapsa
cuando estamos cerca de un agujero negro?, auto respondiéndose que, para
responder a esta pregunta, necesita mucho soporte matemático. 2) Arguye, asimismo, que existe cierta
relación o entrelazamiento, entre la masa de las estrellas en la parte central
de las galaxias y el área central de los agujeros negros que las hospedan,
necesitando aquí aproximaciones de física teórica, para saber cómo unir estructural
y tempranamente los crecimientos de estos fenómenos, en forma simultánea. 3) Respecto al mapeo, la Natarajan arguye que el telescopio Hubble, ha
proporcionado imágenes increíbles para mapear y analizar la materia oscura, ofreciendo
imágenes indirectas de esta materia al estimar la extensión y curvatura de la
luz emitida por diferentes galaxias lejanas. Agregando: “No todo depende de las
imágenes del Hubble, mis mapas necesitan orientaciones matemáticas especialmente
cuando se identifican grupos pequeños de materia oscura, correlacionados a la
perfección con la materia oscura fría,
de tipo no interactivo”. En imágenes tomadas por el telescopio Hubble de la galaxia
en racimo: MACS0416 y de la misma imagen con distribución en azul superpuesta de
la materia oscura, inferida a partir de la distorsión de la luz procedente de
galaxias distantes (las de fondo), se observa como podrían haberse formado inicialmente
agujeros negros supermasivos en el centro de las galaxias. La científica espera que con telescopios más
grandes se logren identificar cuásares brillantes (centros galácticos
luminosos), abastecidos por billones de masas solares y agujeros negros, cuando
el universo tenía apenas un 10 % de su edad actual. Parte de lo anterior es sustentado por la
Natarajan en 2 artículos (2005/2006), en los que al disertar sobre “semillas masivas”, plantea la
extraordinaria idea de que es posible bypasear
la formación de una estrella formando en su lugar semillas
de agujeros negros masivos, de
aproximadamente 10,000 a 1 millón de veces la masa del sol, capaces
de explicar la emergencia de cuásares en épocas muy tempranas de nuestro
universo. 4) Sobre las formas espirales de las galaxias, la Natarajan arguye:” Del
mismo modo que cuando usted jala el tapón de la bañera, el agua forma un vórtice,
algo similar sucede en el universo temprano con la formación de discos de gas, posicionándose
rápidamente el sifón de gas en el centro”. Este colapso directo de “semillas
de agujeros negros” es parte de un historial evolutivo cósmico más grande, subsiguiente
a la generación de una población de agujeros negros: se forman, evolucionan, se tornan en cuásares,
se apagan y brillan hasta hoy. 5) La idea del colapso directo de los
agujeros negros supermasivos (cuásares de épocas tempranas del universo,
alimentadas por agujeros negros supermasivos), es hoy, una teoría líder en la formación del universo temprano, consensuada
por sucesivos pequeños trozos de evidencia.
Para sustentar lo anterior, en una simulación en computadora, la Natarajan
programo el colapso directo de agujeros negros, pobló el universo temprano y propago
el crecimiento de estas galaxias hasta hoy. 6) La notable científica hindu, espera que el telescopio
James Webb Space a
ser lanzado el 2021, observe el
espacio profundamente y hacia atrás en el
tiempo, prestando atención a la formación de galaxias del universo temprano,
hechos que pondrán a prueba la idea del colapso
temprano de la Natarajan. El telescopio James Webb está capacitado para
ver imágenes de la materia oscura con mayor precisión. Premonitoriamente, la
Natarajan afirma que el nuevo telescopio identifica cuásares
en las primeras épocas del universo, estos tendrán que ser agujeros negros con colapso
directo.
Labels: black holes, collapse direct, dark energy, dark matter, how to make good sciencequasars
0 Comments:
Post a Comment
<< Home