ABEL PRIZE : MIKHAIL GROMOV
Metric structures for Riemannian and non-Riemannian spaces
The Nobel Prize in Mathematics (Abel Prize/Norwegian Academy of Science and Letters. 2009/US $ 950,000) was granted to the Jewish-French-Russian Mikhail Gromov L (65), for his ideas that paved new avenues in geometry and other areas of mathematics. Gromov, like Perelman, is a continuous innovator in Riemannanian geometry and topology. He created the theory of metric asymptotic infinite groups, which exceeds previous conceptions of real analysis, Riemann geometry and algebraic topology. His geometric theory of groups, is dedicated to the study of finitely generated groups that explore connections between algebraic and topological properties of such groups and the properties of spaces on which these groups operate. His hyperbolic group proposal, capture the idea of groups finitely generated having negative curvature on large scale.
Gromov form part of a new wave of creators that overcome the initiatives of Svarc and Milnor (growth groups) and the proof of rigidity of structures (manifolds), created by Mostow. Based on the notion of Gromov-Hausdorff-distance between Riemann manifolds (that organizes all types of possible topology on a single connected special module, where convergence allows the collapse of the dimensions), Gromov, created a metric to the interior structure of the theory of homotopy introducing new invariants controlling combinatorial complexity of maps and spaces, such as simplicity of volume for degrees of maps between manifolds. During this era of creation, Banach spaces and probability theory, suffered geometric metamorphosis, stimulated by Levy-Milman phenomenon, that favored laws of large numbers for metric spaces and dimensions aimed towards infinity.
Gromov has written a classic (2006/Metric Riemannian structures and non-Riemannian spaces), product of a course taught by him in Paris, where he outlined his main ideas. Permanent professor of the Institut des Hautes Etudes Scientifiques/France (IHÉS), Gromov currently applies his ideas to human genome sequence. It is said that he hated the Russian school (because it was wasting time), that he left Russia because he hated to speak what others dictate him to say and a teaching position in the U.S., because he lost time (for thinking creatively), getting buses.
PREMIO ABEL :MIKHAIL GROMOV
Gromov form part of a new wave of creators that overcome the initiatives of Svarc and Milnor (growth groups) and the proof of rigidity of structures (manifolds), created by Mostow. Based on the notion of Gromov-Hausdorff-distance between Riemann manifolds (that organizes all types of possible topology on a single connected special module, where convergence allows the collapse of the dimensions), Gromov, created a metric to the interior structure of the theory of homotopy introducing new invariants controlling combinatorial complexity of maps and spaces, such as simplicity of volume for degrees of maps between manifolds. During this era of creation, Banach spaces and probability theory, suffered geometric metamorphosis, stimulated by Levy-Milman phenomenon, that favored laws of large numbers for metric spaces and dimensions aimed towards infinity.
Gromov has written a classic (2006/Metric Riemannian structures and non-Riemannian spaces), product of a course taught by him in Paris, where he outlined his main ideas. Permanent professor of the Institut des Hautes Etudes Scientifiques/France (IHÉS), Gromov currently applies his ideas to human genome sequence. It is said that he hated the Russian school (because it was wasting time), that he left Russia because he hated to speak what others dictate him to say and a teaching position in the U.S., because he lost time (for thinking creatively), getting buses.
PREMIO ABEL :MIKHAIL GROMOV
El Premio Nóbel de Matemáticas (Abel Prize/Norwegian Academy of Science and Letters. 2009/US$ 950,000), fué concedido al judío-franco-ruso Mikhail L Gromov (65), por crear nuevas avenidas en geometría y otras áreas de las matemáticas. Gromov, al igual que Perelman, es un continuo innovador en Geometría Riemannana y topología. Ha creado la teoría métrica asimptótica de grupos infinitos, que supera concepciones anteriores de análisis real, geometría de Riemann y topología algebraica. Su teoría geométrica de grupos, está dedicada al estudio de grupos generados finitamente explorando conexiones entre las propiedades algebraicas de tales grupos y las propiedades topológicas y geométricas de espacios sobre los cuales actúan estos grupos. Su propuesta de grupos hiperbólicos captura la idea de grupos generados finitamente teniendo curvaturas negativas a gran escala.
Gromov forma parte de una nueva ola creativa, continuación de la iniciada por Svarc y Milnor (crecimiento de grupos) y la prueba de la rigidéz de estructuras (manifolds), creada por Mostow. Apoyándose en la noción de distancia de Gromov–Hausdorff, entre los manifolds de Riemann (que organiza manifolds de todos los tipos de topologia posible, en un único módulo especial conectado, donde la convergencia permite el colapso de las dimensiones). Gromov, creó una estructura métrica al interior de la teoría de la homotopia, introduciendo nuevas invariantes, controlando la complejidad combinatoria de mapas y espacios, tales como la simplicidad de volumen responsable de grados de mapas entre manifolds. Durante esta época creativa, los espacios de Banach y la teoría de la probabilidad, sufrieron metamórfosis geométricas, estimuladas por las concentraciones del fenómeno de Levy–Milman, favoreciendo leyes de grandes números para espacios métricos y dimensiones tendientes hacia el infinito.
Gromov ha escrito un clásico (2006/Metric structures for Riemannian and non-Riemannian spaces), producto de un curso dictado por él en Paris, donde expone sus principales ideas. Profesor permanente del Institut des Hautes Études Scientifiques/France (IHÉS), Gromov aplica sus ideas actualmente al secuenciamiento del genoma humano. De él, se dice que odiaba la escuela rusa (porque le hizo perder tiempo), que abandonó Rusia, porque odiaba que le dicten lo que tenia que decir y un puesto de profesor en USA, porque perdía tiempo (para pensar creativamente), subiéndose a los buses.
Labels: Abel Prize
0 Comments:
Post a Comment
<< Home