Friday, August 01, 2008

GLASS, TRANSITION




According to Philip W. Anderson (U/Princeton), an unsettled topic in the theory of solid state, is the related with the nature of glass and its transition. Glass transition differs of the usual one in that although the arrangement of their atoms and molecules are indistinguishable of a liquid its consistency is but rigid. Of all solids, glass is the most disordered and poor structured. Peter G. Wolynes (U/California), based on experiments and simulations in computers, sustains that if glass was cooled slowly, its molecules would not follow an uniform pattern. Some areas will remain but rigid, while others would continue in liquid state, an applicable pattern to many plastics and ceramics.

1) when a conventional liquid solidifies goes through a transitional phase, their molecules adopt an orderly pattern (crystals). When molted glass solidifies such an organization disappears, because some molecules move but and but slowly until not moving (dynamic heterogeneity). 2) When normal water molecules become ice, energy is liberated (latent heat). There is not latent heat in the formation of glass. To but slow the cooling but slow is the transition temperature. This way we get an arbitrary physical-chemical definition of glass: their final structure depends of how slow it was cools down. Wolynes has predicted that viscosity of the glass depends on the entropy (measure of disorder), of the glass. If glasses can cool down to an infinitely slow sequence, the entropy would disappear to a temperature above the absolute zero, violating the 3 law of thermodynamic (entropy disappears in the absolute zero). Wolynes calls his theory "ideal glass", starting from which all properties of glass would be deduced. Wolynes is criticized for not clearly explain the molecular disorder and the lack of knowledge of atomic properties of glass.

ESTADO TRANSICION del VIDRIO.

Según Philip W. Anderson (U/Princeton), un tema irresuelto en la teoria del estado sólido, es la relacionada con la naturaleza del vidrio y su transición. La transición del vidrio, difiere de la usual en que aunque el arreglo de sus átomos y moléculas es indistinguible de un liquido, su consistencia es mas rigida. De los sólidos, es el más rigido, desordenado y desestructurado. Peter G. Wolynes (U/California), basado en experimentos y simulaciones en computadora, sostiene que si el vidrio fuese enfriado lentamente, sus moléculas no seguirían un patrón uniforme. Mientras algunas áreas adquiririán patrones más rigidos, otras continuarían en forma liquida o fundida, un patrón aplicable a muchos plásticos y cerámicos.

1) Cuando un liquido convencional se solidifica pasa por una fase transiciónal en la que sus moléculas se alinean ordenadamente unas sobre otras (cristales). Cuando el vidrio fundido se solidifica desaparece tal organización, porque algunas moléculas se mueven mas y mas lentamente, hasta no moverse (heterogeneidad dinámica). 2) Cuando moléculas de agua normales se convierten en hielo, se libera energía (calor latente). No hay calor latente en la formación del vidrio. A mas lento el enfriamiento mas lenta es la temperatura de transición. Se obtiene asi, una arbitraria definicion físico-quimica del vidrio: su estructura final depende de cuan lento se enfrió. Wolynes ha predicho que la viscosidad del vidrio depende de la entropia (medida del desorden), del vidrio. Si los vidrios pudiesen enfriarse a una secuencia infinitamente lenta, la entropía se desvanecería a una temperatura por encima del zero absoluto, violando la 3 ley de la termodinámica (la entropía desaparece en el zero absoluto). Wolynes llama a su teoría “vidrio ideal”, a partir del cual se deducirían todas las propiedades del vidrio. A Wolynes se le critica no explicar el desorden molecular y la falta de conocimiento de las propiedades atómicas del vidrio.