Monday, October 18, 2010

MANDELBROT SET




Strange the death of the polish mathematician Benoit Mandelbrot: he died, but his ideas are more alive than ever. Mandelbrot, creator of fractal geometry (semigeométric, irregular objects repeated at different scales), understood since 1960, that clouds, turbulence, chaotic systems, behavior of prices, growth of mammals, mountains, circulatory system, snowflakes, coastlines, fluctuations in the stock market, brain tissue, the immune system, climates, etc., had similar patterns when they were studied using scales increasingly smaller (fuzzy boundaries). He understood also that he could model these phenomena with mathematical objects called fractals (fractional dimensionality).

The most famous fractal is the Mandelbrot set, a subset of the complex space, whose boundaries are fractal. In Mandelbrot set, the values for the complex number c, are built in sequence induction, so that the orbit of 0 under iteration of the complex quadratic polynomial :zn+1 = zn2 + c , remains bounded. A complex number such that if you start with z0 = 0 and applied the iteration repeatedly zn absolute value never exceeds a certain number that depends on c. In the computer the Mandelbrot set has a determined limit. As you look at the object with higher and higher resolutions, the edges of the snowman is so vague as the edges of a flame (looks like a fractional dimensionality). The predecessor of fractals is Norbert Wiener's book Cybernetics: Control and Communication in the Animal and the Machine (1948), which sought to model the performance of machines, biological phenomena, unicellular organisms, the economy of nations.

FRACTALES

Extraña muerte la del matemático pólaco Benoit Mandelbrot: falleció, pero sus ideas siguen más vivas que nunca. Mandelbrot, creador de la geometría fractal (objeto semigeométrico cuya estructura básica, irregular, se repite a diferentes escalas), entendió a partir de 1960, que las nubes, la turbulencia, los sistemas caóticos, la conducta de los precios, el crecimiento de los mamíferos, las montañas, el sistema circulatorio, los copos de nieve, las líneas costeras, las fluctuaciones del stock de los mercados, el tejido cerebral, el sistema inmune, los climas,etc., tenían patrones similares cuando se les estudiaba recurriendo a escalas cada vez más pequeñas (presentaban limites borrosos). Entendió entonces que podía modelar estos fenómenos con objetos matemáticos llamados fractales (dimensionalidad fraccional).

El más famoso de los fractales es el set de Mandelbrot, un subconjunto del espacio complejo, cuyos límites forman un fractal. En el set de Mandelbrot, los valores para el número complejo c, son construidos en sucesión por inducción, de modo tal que en la órbita de 0 y bajo iteración del complejo cuadrático polinomio zn+1 = zn2 + c, permanecen unidos. Un número complejo tal, que si se inicia con z0 = 0 y se aplica la iteración repetidamente el valor absoluto de zn nunca excede cierto número que depende de c. En la computadora el set de Mandelbrot presenta un límite elaborado. A medida que se mira el objeto con resoluciones más y más altas, los bordes del hombre de nieve son tan vagos como los bordes de una llama (como luce una dimensionalidad fraccional). El antecesor de los fractales es el libro de Norbert Wiener Cybernetics: Control and Communication in the Animal and the Machine (1948), que pretendía modelar el funcionamiento de máquinas, fenómenos biológicos, organismos unicelulares, economía de las naciones.

No comments: