GREAT ADVANCES in GENOMICs
I) After analyzing the DNA of 270 people (by means of Copy Number Variation: CNV, technique that measures variations of thousands of letters of DNA), a British team identified vast duplicated or lost regions, being concluded that 2 humans are completely different (Matthew Hurles). Up to now alone we know of anomalies to great scale (chromosomes, duplicated, truncated, or copied) and little of bases or, letters. Each one of us has an unique pattern of earnings and lost complete sections of their DNA, says Hurles of the UK's Wellcome Trust Sanger Institute. Among others, the copies of certain proteins vary in 12 % -what is huge-. The illnesses are born when being increased the number of copies. Charles Lee of the Brigham and Women's Hospital and Harvard Medical School in Boston, US, says that it is possible that illnesses like Alzheimer and Parkinson, be consequence of it. Although one doesn't know when emerge copies' variations, it is possible that they have to do with errors made during the elaboration of ova and sperms.
II) An additional work, suggests that garbage DNA (junk, for not having well-known biological functions, constituent of 97% of the genome), would exhibit important functions. Before, it was thought that single 22,000 genes (1%, of the genome), were those in charge of building proteins, beside segments of DNA that controlled or regulated the genes. Isidore Rigoutsos leader of the work, affirms that they found transcripted DNA junk to RNA copies (that transports information from DNA to the cellular machinery), in a such way that now the genome exhibits transcriptions of established RNA by way of a net, parts of which elaborate proteins and others show functions ignored until today.
III) The building of the Encode (Encyclopedia of elements of the DNA. Book of Life), a collaborative study of 80 world organizations, in charge of providing the sequences of DNA, of all the species. At the moment they work the sequence of 1% of human genome, integrating 80 different types of experiments (600 million data). Ewan Birney, of the Molecular European Biology Laboratory's European Bioinformatics Institute, Boss of the Project says: "We know the letters of the genoma, but not the understanding."
IV) The epic to decipher (to read), totally the genomes of diverse organic beings (included the human being), goes being behind. What interests us now is how it works: ¿is the human genome programmed to last single 120 years or, it is infinite? Which is the concept of being healthy, after studying varied individual human genomes? Can we improved artificially the human being’s genomes? In which way influence the illness and the environment in the structure of our genome?. How much this knowledge will teach us to create artificially, non organic self-reproducible coDNAs (as we would call it, derived from organic DNA)?. If it happens as we think : we are imperfect, it will be appropriate to design improved genomes. If until recently the conflict to decipher the genome faced some private managers (Craig Venter) and National Institutes of Salud/USA, what comes (genome’s functionality in the health and the illness), will be wonderful. The Wellcome Trust Marries Control Consortium (WTCCC), studied the DNA of 14 000 Britons (2,000 affected with 7 of the illnesses but world prevalents + 3000 controls healthy volunteers), looking for genetic differences. For it, the WTCCC introduced the Affymetrix GeneChip 500K Mapping Array Sep that scan hundred of thousands of markers of DNA. The comparisons case/control identified 24 signals (variant genetics), of independent association (with statistic significance): 1 (loci: gene with but risk of disease), in bipolar disorder, 1, in coronary arterial disease, 9, in disease of Crohn, 3, in reumatoid arthritis, 7, in diabetes type -I- and 3, in diabetes type -II-, 1, in obesity, 1 gene common to both : diabetes type -I- and disease of Crohn, opening new avenues that will permit design customized and effective treatments, understanding better how emerge the disease, what kind of people are at risk, to modify lifestyles, etc. In the future the combinations of genes will be considered to evaluate the risk of life for a particular disease. Many common diseases involve genes, environment and life styles, say to Dr. Mark Walport, director of the Wellcome Trust, that adds that collected data would be of public dominion, immediately.
GRANDES AVANCES en GENOMICA.
IV) The epic to decipher (to read), totally the genomes of diverse organic beings (included the human being), goes being behind. What interests us now is how it works: ¿is the human genome programmed to last single 120 years or, it is infinite? Which is the concept of being healthy, after studying varied individual human genomes? Can we improved artificially the human being’s genomes? In which way influence the illness and the environment in the structure of our genome?. How much this knowledge will teach us to create artificially, non organic self-reproducible coDNAs (as we would call it, derived from organic DNA)?. If it happens as we think : we are imperfect, it will be appropriate to design improved genomes. If until recently the conflict to decipher the genome faced some private managers (Craig Venter) and National Institutes of Salud/USA, what comes (genome’s functionality in the health and the illness), will be wonderful. The Wellcome Trust Marries Control Consortium (WTCCC), studied the DNA of 14 000 Britons (2,000 affected with 7 of the illnesses but world prevalents + 3000 controls healthy volunteers), looking for genetic differences. For it, the WTCCC introduced the Affymetrix GeneChip 500K Mapping Array Sep that scan hundred of thousands of markers of DNA. The comparisons case/control identified 24 signals (variant genetics), of independent association (with statistic significance): 1 (loci: gene with but risk of disease), in bipolar disorder, 1, in coronary arterial disease, 9, in disease of Crohn, 3, in reumatoid arthritis, 7, in diabetes type -I- and 3, in diabetes type -II-, 1, in obesity, 1 gene common to both : diabetes type -I- and disease of Crohn, opening new avenues that will permit design customized and effective treatments, understanding better how emerge the disease, what kind of people are at risk, to modify lifestyles, etc. In the future the combinations of genes will be considered to evaluate the risk of life for a particular disease. Many common diseases involve genes, environment and life styles, say to Dr. Mark Walport, director of the Wellcome Trust, that adds that collected data would be of public dominion, immediately.
GRANDES AVANCES en GENOMICA.
I) Tras analizar el DNA de 270 personas (mediante Copy Number Variation :CNV, técnica que mide variaciones de miles de letras de DNA), un equipo británico identificó vastas regiones duplicadas o perdidas, concluyéndose que 2 humanos son totalmente diferentes (Matthew Hurles). Hasta ahora solo se sabia de de anomalias a gran escala (cromosomas duplicados, truncados, o duplicados) y poco de las bases o, letras. Cada uno de nosotros tiene un patron único de ganancias y perdidas de secciones completas de su DNA, dice Hurles del UK's Wellcome Trust Sanger Institute. Entre una y otra, las copias de determinada proteina varian en un 12%, lo que es enorme. Las enfermedades nacen al incrementarse el número de copias. Charles Lee del Brigham and Women's Hospital and Harvard Medical School in Boston, US, dice que es posible que las enfermedades de Alzheimer y Parkinson, sean consecuencia de ello. Aunque no se sabe cuando emergen las variaciones de las copias es posible que tengan que ver con errores cometidos durante la elaboración de óvulos y espermatozoides.
II) Un trabajo adicional, sugiere que el DNA basura (junk, por no tener funciones biológicas conocidas, constituyente del 97% del genoma), exhibiria funciones importantes. Antes se pensaba que solo 22,000 genes (1%, del genoma), eran los encargados de construir las proteinas, al lado de segmentos de DNA que controlaban o regulaban los genes. Isidore Rigoutsos, lider del trabajo, afirma que encontraron DNA basura transcrito o copiado a RNA (transporta informacion del DNA a la maquinaria celular), de modo tal que ahora el genoma exhibe transcripciones de RNA establecidas a modo de una red, partes de las cuales elaboran proteinas y otras ostentan funciones por hoy desconocidas.
III) Gesta del Encode (Enciclopedia de elementos del DNA. Libro de la Vida), estudio colaborativo de 80 organizaciones mundiales, encargada de proporcionar las secuencias de DNA, de todas las especies. De momento trabajan la secuencia del 1% del genoma humano, integrando 80 diferentes tipos de experimentos (600 millones de datos). Ewan Birney, del European Molecular Biology Laboratory's European Bioinformatics Institute, Jefe del Proyecto dice: “Conocemos las letras del genoma, pero no la comprensión”.
IV) La epopeya por descifrar (leer), totalmente los genomas de diversos seres organicos (incluido el hombre), va quedando atrás. Lo que interesa ahora es como funciona :¿esta programado el genoma humano para durar solo 120 años o, es infinito? ¿Cual es el concepto de estar sano, tras estudiar variados genomas individuales? ¿son perfectibles los genomas? ¿cuanto influye la enfermedad y el medio ambiente en la estructura de nuestro genoma?. ¿Cuánto nos enseñará este conocimiento para crear coDNAs (DNAs artificiales inorgánicos), autorreproducibles?. Si como se espera, somos imperfectos, es congruente diseñar genomas mejorados. Si hasta hace poco la pugna por descifrar el genoma enfrentaba a algunos empresarios privados (Craig Venter) y los institutos nacionales de Salud/USA, lo que se viene (funcionalidad del genoma en la salud y la enfermedad), se entrevé maravilloso. El Wellcome Trust Case Control Consortium (WTCCC), ha estudiado el DNA de 14 000 britanicos (2,000 afectos con 7 de las enfermedades mas prevalentes mundiales + 3000 controles voluntarios sanos), buscando diferencias genéticas. Para ello, el WTCCC ha introducido el Affymetrix GeneChip 500K Mapping Array Set, que escanea cientos de miles de marcadores de DNA. Las comparaciones caso/control identificaron 24 señales (variantes genéticas), de asociación independiente (P menor de Mark Walport, director del Wellcome Trust, quien añade que los datos obtenidos seran de dominio público inmediato.
IV) La epopeya por descifrar (leer), totalmente los genomas de diversos seres organicos (incluido el hombre), va quedando atrás. Lo que interesa ahora es como funciona :¿esta programado el genoma humano para durar solo 120 años o, es infinito? ¿Cual es el concepto de estar sano, tras estudiar variados genomas individuales? ¿son perfectibles los genomas? ¿cuanto influye la enfermedad y el medio ambiente en la estructura de nuestro genoma?. ¿Cuánto nos enseñará este conocimiento para crear coDNAs (DNAs artificiales inorgánicos), autorreproducibles?. Si como se espera, somos imperfectos, es congruente diseñar genomas mejorados. Si hasta hace poco la pugna por descifrar el genoma enfrentaba a algunos empresarios privados (Craig Venter) y los institutos nacionales de Salud/USA, lo que se viene (funcionalidad del genoma en la salud y la enfermedad), se entrevé maravilloso. El Wellcome Trust Case Control Consortium (WTCCC), ha estudiado el DNA de 14 000 britanicos (2,000 afectos con 7 de las enfermedades mas prevalentes mundiales + 3000 controles voluntarios sanos), buscando diferencias genéticas. Para ello, el WTCCC ha introducido el Affymetrix GeneChip 500K Mapping Array Set, que escanea cientos de miles de marcadores de DNA. Las comparaciones caso/control identificaron 24 señales (variantes genéticas), de asociación independiente (P menor de Mark Walport, director del Wellcome Trust, quien añade que los datos obtenidos seran de dominio público inmediato.
Labels: Encode, human genome
0 Comments:
Post a Comment
<< Home