Taken from PNAS Among several 3 news, related to the positioning of holistic concepts,
extracted from observations made in humans and animals -and their respective
validation- to prevent or eliminate cancer. I) The observation that: a)
elephants and naked mole rats rarely acquire cancer, while ferrets and dogs
acquire it at very high frequencies. In 1977, Richard Peto postulated that
cells of large bodies suffering more cell divisions had
more risk of acquiring cancer and, that other small and short-lived: not. But,
when Peto studied the incidence of cancer in large animals, he did not find what
his theory preached (Peto’s paradox).
In 2015, Joshua Schiffman (High Risk Pediatric Cancer Clinic at Huntsman
Cancer, University of Utah) and collaborators, discovered that elephants had 40
copies of TP53 suppressor tumor gene (also present in humans and animals),
which, when detecting irreparable damage in DNA, they promote the death of the
cells involved, avoiding cancer. Now, Schiffman plans to introduce TP53 genes
into humans, via nanoparticles. On the other hand, in 2018, Vincent Lynch
showed that the elephants also had 11 extra copies of the gene: leukemia
inhibitory factor (LIF). A copy of LIF6 is activated by a TP53 in response to
DNA damage. b) Naked mole rats (Heterocephalus
glaber), a species of mice that live more than 30 years, typically exhibit
an extracellular matrix. Keeping some space between the cells they reduce the
risk of cancer. c) The resistance to cancer of the South American
capybara (Hydrochoerus hydrochaeris),
is explained because although the insulin signals of these animals allow them
to grow more than their ancestors, the collateral effect is that regulating
(counteracting), this growth, turn their hypervigilant immune system against
cancer. In this case, the same growth signals of the capybaras are sequestered
by the cancer cells promoting their own growth and proliferation. d) Amy
Boddy (University of California, Santa Barbara), argues that during mammal’s pregnancy,
the placenta acts as a fetal tissue, which invades the mother's womb, promoting
the proliferation of blood vessels and suppressing the maternal immune system
so that the mother tolerates cells from genetically different fetuses. In the
same way a metastatic tumor suppresses the immune system, so genetically
different cells are tolerated. Although sometimes, when a gene regulates more
than one function, these can come into conflict.
II) The theory promoted
by Panos Anastasiadis (Department of Cancer Biology on Mayo Clinic's Florida),
proposing a close and vital interrelation between the growth of normal cells
and their corresponding brake, not existing brakes for cancer cells. For
Anastasiadis, the mechanisms that maintain the growth-brake cell system in a
normal or altered state reside in the intercellular junctions. He said that
until recently, it was thought that these adhesion molecules functioned only as
a glue that holds cells together, when in fact their real function is to
generate specific structures that produce intercellular communication signals
through microRNAs (expression regulators genes). When communication through
these intercellular molecular structures is interrupted, tumorigenesis would
occur, that’s to say bad-regulated
microRNAs would promote out-of-control cell growths. In this regard
Anastasiadis said that when normal cells come into contact with another
specific subset of microRNAs, they are able to suppress genes that promote cell
growth. Therefore, by normalizing the function of defective microRNAs in cancer
cells, it will be possible to reverse aberrant growths, reprogramming cancer cells to normal cells). The pending task here
is to identify adhesion proteins that interact with microRNAs, which ultimately
orchestrate complete cellular programs of simultaneous regulatory expression of
a group of genes. Experimentally Anastasiadis has given microRNAs back into the
cancer cells and get them effectively reprogrammed
to normal cells. Anastasiadis concludes that anomalous forms of cells
identified by some histopathologists as cancer, are rather the expression of
defective intercellular adhesions, not always being evidence of malignancy.III) Finally, there is currently great progress in
the rapid identification of traces of tumors in small blood samples containing
abnormal DNA, having created the 2016, the Grail
company, with a capital of $ 1.5bn of dollars with contributions from
Microsoft and Amazon to detect multiple cancers at once, before the onset of
symptoms. The identified fragments known as circulating
tumor DNA (ctDNA) are eliminated by cancer cells. Although there are still
problems of sensitivity and specificity, high costs and quantity of blood to be
extracted, the goal is to detect 10 cancers at a time. There is confidence
because it is now possible to scan very small fragments and identify those few
with alterations that may indicate cancer. Other companies on this flight are Epigenomic, Guardant Health, Breathomics,
Owlstone Medical.
In an updated paper about the current possibilities
of creating a functional artificial brain similar to the human brain, the
weaknesses and strengths of such efforts are exposed in Science. The analysis begins with the question: ¿Can machines
think?, self-answered by Alan Turing, in 1950, who alluded to: a)
A mathematical negative formulated by Kurt Gödel and Church, Kleene, Boater and
Turing, referred to digital computers, which despite having an infinite
capacity, such machines in front of certain things or questions would not
respond or would do it wrongly. Penrose suggested (1980,1994), that certain
human brain molecular structures could
adopt a state of quantum superposition and entanglement (more so, if
electrons transiting through human neural circuits do so in ionic forms), paving
the way for the future use of artificial quantum computers in order to equal
human brain performance. b)
Returning to Turing, he closed his point of view postulating by that time (1950), that for
machines to start thinking like a human brain the important thing was to
imitate the complex biological neural computational systems, having as a guide
the human neural circuits, imitation that to the present time has made possible the creation of neural circuits
systems imitating the cerebral cortex (deep
network), constructed with successive layers of elements similar to neurons
connected by artificial synapses,
producing speech recognitions, complex games, translation of texts, computer
vision, classification and segmentation of objects, capture of images, where someone
try to produce a short verbal
description of an image, answer visual questions and of human communication
about the content of an image, or non-visual tasks: analyze humor and sarcasm,
comprehension and intuitive aspects of social things, serve as assistants
persons, in medical diagnosis, automatic car handling. Despite this, there are
problems to be solved: I) To improve
the adjustment of learning through synapses to produce desired output patterns,
conditioned by training at the inputs. II)
Achieve a learning with deep artificial neural networks that go beyond simple
memorization producing logical outputs, not necessarily programmed during the
learning process. III) In this
perspective, highlights the incorporation into AI (artificial intelligence),
associated to deep neural artificial networks of the called: learning reinforcement: LR (mapping of
situations or actions to maximize the signal of reward or reinforcement, not to
take certain actions, but to discover through trial, error and reward the best
option in order to modify the behavior). LR models combined with AI algorithms,
are currently applied to video games, Go and Chess, reaching in this last level
of world champions with only 4 hours of training. IV) However, the most notable
differences between the biological circuit and artificial neural networks systems
are those based on structure: biological
neurons are complex and diverse in morphology, physiology and
neurochemistry. The entrances to excitatory pyramidal neurons are distributed
over very complex dendritic branches. Cortical inhibitory neurons exhibit
different functions, none of these heterogeneities being included in artificial
neural networks. Biological cerebral
cortical circuits are more complex than
models of artificial neural networks, including lateral connectivity
between neurons, as well as local connections, more extensive connections and
connections up and down in the hierarchical cortical regions. V) It is expected that artificial
neural networks will promote a real human understanding, in order to address
broad aspects of cognition and general artificial intelligence (IGA).
Meanwhile, these techniques continue to be perfected under the guidance of
neuroscience. VI) There are other
functional differences between biological and artificial systems: A) AI's current artificial models rest heavily on the empirical side using
simple and uniform artificial neural network structures employing large sets of training data
for learning. Biological systems
carry out tasks with limited training, learning about pre-existing network
structures already encoded in circuits before learning, with which insects,
fish and pigeons, perform complex navigation tasks using part of an elaborate
set of innate mechanisms with sophisticated computational capabilities. B) Therefore, the development of
complex cognitive and perceptual activities in children with little training,
in the first months of their lives is possible, recognizing they complex
instruments such as their hands, following people with their gazes and distinguish visually if the
characteristics of certain animals are dangerous or not, while developing an
incipient understanding of physical or social interactions, through
unsupervised learning, given the presence of innate cognitive systems generated
by evolution, which facilitated the acquisition of significant concepts and
skills. Recent models of visual learning in childhood, show that significant
and complex concepts are not innate or learned by the child, but are proto-concepts
that provide signals of internal teaching guiding the learning system along
pathways that lead to a progressive acquisition and organization of complex
concepts with little or no explicit training. Sometimes, a particular pattern
of moving images provides an internal signal for the recognition of their hands
that helps them to manipulate objects guiding the learning system in the
direction of their gaze. Innate structures implemented in cortical regions with
specified connectivity warn initially of specific input errors. Perhaps in the
future, these pre-existing structures could be coupled to artificial neural
models to simulate human learning.Imagine computational learning methods starting
from proto-concepts with structures inserted in humans or robots that learn to
quickly become familiar with unknown environments in an efficient andflexible way,
very different from the current learning procedures. Summing up: I)Following Shimon Ullman, we believe that each machine or robot of the
future that must possess a human-like brain should it be virginally inserted a
basic code -not to obey commands- but to complete what it should be (or do),
before each new situation or environment, using analogies, logic or emerging
thinking solutions. II) Today's hyper-super-computers have no
future for this purpose because: a')
They use artificial neuron-artificial
neuron transmissions, usingelectrons that circulate through
metallic means. a'')Human neurons
send messages to other neurons usingions that are more adapted to quantum models (entanglements and others), allowing
almost simultaneous transmissions in all possible planes, including feedback-type ones. Although current
computers transmit information in several planes, they lack
artificial-totalizing organizer neurons, which to be functional should be
spherical or pyramidal. b') Although the human brain allows the
circulation of 20% of total human body blood at every moment, it does not get
very hot, because the membranes of its neurons are covered by a fat content
resistor that allows them to capture electrons from the environment and adapt
them to ions that allow the transmission of the message to millions of other
neurons . b'') You have to
copy this resistor model and include it in a quantum computer. c')
The problem of reduced space of the artificial brain is solved in quantum
computers using artificial neurons with spherical or pyramidal shapes capable
(or almost) of dealing with thousands or millions of other artificial neurons.
CHALLENGES ON THE BORDERS OF
SCIENCE and, HOW TO RESOLVE THEM.
1) Identify problems, choose
the main problem (the one that explains the rest). Develop a
hypothesis and test it. 2) Analyze the results, assessing the evidence. 3) New and
improved hypothesis. Questions and cross-questions to the maximum. Incorporation
of contributions and ideas from other scientific areas. New hypothesis and so
on, again and again.
Let's see 2 cases:
I) First case. Recognized as an interstellar object ("Oumuamua"), by the International
Astronomical Union, this entity discovered in October 2017, supposedly natural,
has been questioned by the astronomer Abraham Loeb (Harvard University,
Astronomy Deparment), given the pretty bizarre features of this, to be an
asteroid or a comet of our solar system : a)
when passing close to the earth the entity rotated on itselfevery 8 hours b) it has a brightness that changes by a factor of 10 c) It is 5 times longer than wide d) It does not emit much heat e) It is a good reflector of light, but poorly
conservative of it f) It does not absorb light well g) not much is known about its surface
because it has not been possible to take a clear close image of its surface h) The entity follows a path not governed by the sun's
gravity j) The entity exhibits an
extra force that drives it. Such kind of an object with unusual characteristics
and limited data, has forced Loeb to
propose several alternatives for it,instead of accepting it exclusively as a
natural entity, once again dividing an elite of world scientists: a minority
that argues that possessing such unusual
features, one possibility -within
several- is that it is an extraterrestrial probe launched by an intelligent
civilization, and another represented by scientists not so open minded to
ensure that it is a natural object and nothing more. An interdict on the very
frontier of science, whose arguments as always bring us back to Plato and
dialectics and whose final solution will once again be determined by the
evidence. A phenomenon like this with such unusual characteristics can be
anything, until it is proven otherwise.
From quantamagazine II)
The other case corresponds to the enigmatic subject of matter and dark energy
and black holes, conforming 95% of our visible universe, for which the
theoretical astrophysics of Yale University: Priyamvada Natarajan, has proposed
to study them coherently, using various methodsincluding the mapping of them. The central theoretical idea of the Indian
astrophysics is to suppose that supermassive black holes are a fundamental part
of the structure, the energetic area and the evolution of our universe, due to
being located in the center of galaxies, determining the form and other
characteristics of the galaxies. A very difficult subject to study located on
the same frontier of science. How to demonstrate this theory if the mentioned
phenomena are characterized by their invisibility. To face this challenge, the
Natarajan, argues to have the stamina, mental clarity and above all know what she
isdoing aided by mathematical approaches, quite
necessary in this case. 1) She says
that one of the first things to do is to understand why all the current physics
collapses when we are close to a black hole? auto answering she says:” you need
a lot of mathematical support”. 2) She
also argues that there is a certain
relationship or interweaving between the mass of the stars in the central part
of the galaxies and the central area of the black holes that host them,
needing here approximations of theoretical physics, to know how to join the
framework and early growths of these
phenomena, simultaneously. 3) Regarding
the mapping, the Natarajan argues that the Hubble telescope has provided
incredible images to map and analyze dark matter, offering indirect images of
this matter when estimating the extension and curvature of the light emitted by
different distant galaxies. Adding: "But, not everything depends on the
Hubble images. My maps need mathematical orientations especially when small clumps
of dark matter are identified, which correlated perfectly with the cold, non-interactive dark matter".
In images taken by the Hubble telescope of the cluster galaxy: MACS0416 and of
the same image with superimposed blue distribution of dark matter, inferred
from the distortion of light from distant galaxies (the background ones), it is
observed how supermassive black holes could have initially formed at the center
of galaxies. The scientist hopes that with larger telescopes it will be
possible to identify bright quasars (luminous galactic centers), supplied by
billions of solar masses and black holes, when the universe was only 10% of its
current age. Part of the above is supported by the Natarajan in 2 articles
(2005/2006), in which when lecturing on "massive seeds",she raised
the extraordinary idea that it is possible to bypass the formation of a star
forming insteadseeds of massive black holes, of approximately
10,000 to 1 million times the mass of the sun, able to explain the emergence of
quasars in very early times of our universe. 4) On the spiral forms of galaxies, Natarajan argues: “In the same way that when you pull the plug of the
bathtub, the water forms a vortex, something similar happens in the early
universe with the formation of gas discs, quickly positioning the gas siphon in
the center". This direct collapse of "seeds of black holes" is
part of a larger cosmic evolutionary history, subsequent to the generation of a
population of black holes: how they form, evolve, turn into quasars, go out and
shine until today. 5) The idea of
the direct collapse of supermassive black holes (quasars of early times of
the universe, fed by supermassive black holes), is today, a leading theory in
the formation of the early universe, consensuated by successive small pieces of
evidence. To support the above, in a computer simulation, the Natarajan successfully
programmed the direct collapse of black holes: populated the early universe and
propagated the growth of these galaxies until today. 6) The noted Hindu scientist, hopes that the James Webb Space
telescope to be launched in 2021, observe
the space deeply and backward in time, paying attention to the formation of
galaxies of the early universe, facts that will test the idea of early collapse
of the Natarajan. The James Webb telescope is able to see images of dark matter
more accurately. Premonitorily, the Natarajan affirms that if the new telescope
identifies quasars in the first epochs of the universe, these will have to be
black holes with direct collapse.
DESAFÍOS
EN LASFRONTERASDE LACIENCIA y, COMO RESOLVERLOS.
1)Identificar problemas. Escoger el problema principal
(el que explique alresto de problemas). Elaborar una hipótesis y
someterla a prueba. 2) Analizar los resultados, valorando las evidencias. 3) Nueva
hipótesis, mejorada. Preguntas y repreguntas al máximo. Incorporación de
aportes e ideas de otras áreas científicas. Nueva hipótesis y así, una y otra
vez. Veamos 2 casos:
I) Reconocido
como un objeto interestelar (“Oumuamua”),
por la International Astronomical Union, este ente descubierto en octubre del
2017, supuestamente natural, ha sido puesto
en entredicho por el astrónomo Abraham Loeb (Harvard University, Astronomy
Deparment), dadaslas características bastante bizarras deeste, para
ser un asteroide o un cometa de nuestro sistema solar,el mismoque : a) al pasarcerca
de la tierra rotaba sobre si cada 8 horas b)
que posee una brillantez que cambia por un factor de 10 c)que es 5 veces más largo
queancho d) que no emite mucho calor e)
que es un buen reflector de la luz, pero mal conservador de ella f) que no absorbebien la luz g) del que no se conocemucho sobre su superficie porque
no se ha podidotomarle una imagen cercana nítida h) que sigue un trayecto no gobernado
por la gravedad del sol i) que no es
influenciado por la gravedad del sol j)que exhibe una fuerza extra que lo impulsa.
Un objeto con características desusuales y con datos limitados, que ha obligado a Loeb aproponer para este objeto varias alternativas, en vez de aceptarlo exclusivamente
como un ente natural, dividiendo una vez
más a una elite decientíficos mundiales: una minoría que arguyeque al poseercaracterísticas tan desusuales,
una posibilidad dentro de varias, es quese trate de una sonda
extraterrestre lanzada por una civilización inteligente y, otra representada por científicos demente no tan abierta que aseguran que se trata de un objeto natural y
nada más. Un entredicho en la misma frontera de la ciencia, cuyos argumentos
como siempre nos retrotraen a Platón y a los dialecticos y cuya solución final una
vez más será determinada por las evidencias. Un fenómeno como este con
características tan desusuales puede ser cualquier cosa, hasta que no se
demuestre lo contrario, claro. II) El
otro caso corresponde al enigmático asunto de la materia y energía oscura y los
agujeros negros, conformantes del 95% de nuestro universo visible, para los
cuales la astrofísica teórica de la Universidad de Yale: Priyamvada Natarajan,
se ha propuesto estudiarlos coherentemente, empleando
diversos métodos incluyendo el mapeo de los mismos. La idea teórica central de la astrofísica hindú
es suponer que agujeros negros supermasivos son parte fundamental de
la estructura, el área energética y la evolución de nuestro universo, en
razón de estarubicados en el centro de las galaxias, determinando
la forma y otras características de las galaxias. Un tema bastante difícil de estudiar ubicado en
la misma frontera de la ciencia. Como demostrar esta teoría si los fenómenos mencionados
se caracterizan por su invisibilidad. Para
afrontar este desafío, la Natarajan, arguye disponer de la estamina, la claridad
mental y sobre todo saber lo que está haciendo ayudada por aproximaciones matemáticas
bastantenecesarias en este caso. 1) Dice ella, que una de
las primeras cosas por hacer es entender ¿porque toda la física actual colapsa
cuando estamos cerca de un agujero negro?, auto respondiéndose que, para
responder a esta pregunta, necesita mucho soporte matemático. 2) Arguye, asimismo, que existe cierta
relación o entrelazamiento, entre la masa de las estrellas en la parte central
de las galaxias y el área central de los agujeros negros que las hospedan,
necesitando aquí aproximaciones de física teórica, para saber cómounir estructural
y tempranamente los crecimientos de estos fenómenos, en forma simultánea. 3)Respecto al mapeo, la Natarajan arguye que el telescopio Hubble, ha
proporcionado imágenes increíbles para mapear y analizar la materia oscura, ofreciendo
imágenes indirectas de esta materia al estimar la extensión y curvatura de la
luz emitida por diferentes galaxias lejanas. Agregando: “No todo depende de las
imágenes del Hubble, mis mapas necesitan orientaciones matemáticas especialmente
cuando se identifican grupos pequeños de materia oscura, correlacionados a la
perfección con la materia oscura fría,
de tipo no interactivo”. En imágenes tomadas por el telescopio Hubble de la galaxia
en racimo: MACS0416 y de la misma imagen con distribución en azul superpuesta de
la materia oscura, inferida a partir de la distorsión de la luz procedente de
galaxias distantes (las de fondo), se observa como podrían haberse formado inicialmente
agujeros negros supermasivos en el centro de las galaxias. La científica espera que con telescopios más
grandes se logren identificar cuásares brillantes (centros galácticos
luminosos), abastecidos por billones de masas solares y agujeros negros, cuando
el universo tenía apenas un10 % de su edad actual.Parte de lo anterior es sustentado por la
Natarajan en 2 artículos (2005/2006), en los que al disertar sobre “semillas masivas”, plantea la
extraordinaria idea de que es posiblebypasear
la formación de una estrella formando en su lugar semillas
de agujeros negros masivos, de
aproximadamente10,000 a 1 millón de veces la masa del sol, capaces
de explicar la emergencia de cuásares en épocas muy tempranas de nuestro
universo. 4)Sobre las formas espirales de las galaxias, la Natarajan arguye:” Del
mismo modo que cuando usted jala el tapón de la bañera, el agua forma un vórtice,
algo similar sucede en el universo temprano con la formación de discos de gas, posicionándose
rápidamente el sifón de gas en el centro”.Este colapso directo de “semillas
de agujeros negros” es parte de un historial evolutivo cósmico más grande, subsiguiente
a la generación de una población de agujeros negros: se forman, evolucionan, se tornan en cuásares,
se apagan y brillan hasta hoy.5) La idea del colapso directo de los
agujeros negros supermasivos (cuásares de épocas tempranas del universo,
alimentadas por agujeros negros supermasivos), es hoy, una teoría líder en la formación del universo temprano, consensuada
por sucesivos pequeños trozos de evidencia.
Para sustentar lo anterior, en una simulación en computadora, la Natarajan
programo el colapso directo de agujeros negros, pobló el universo temprano y propago
el crecimiento de estas galaxias hasta hoy.6)La notable científica hindu, espera que el telescopio
James Webb Spacea
ser lanzado el 2021, observeel
espacio profundamente y hacia atrás en el
tiempo, prestando atención a la formación de galaxias del universo temprano,
hechos que pondrán a prueba la idea del colapsotemprano de la Natarajan. El telescopio James Webb está capacitado para
ver imágenes de la materia oscura con mayor precisión. Premonitoriamente, la
Natarajan afirma que el nuevo telescopio identificacuásares
en las primeras épocas del universo, estos tendrán que seragujeros negros concolapso
directo.
Some
scientists believe that the final objectives of the development of Artificial
Intelligence (A.I.) -and of robotic brains- never reach the tessitura,
sophistication and creativity of human brains. Faced with this challenge, the
continuous discoveries in A.I. and neuroscience contradict the previous,
indicating that feelings, passions, ideas, memory and all abstract concepts are
computable. Thus, in the mentioned fields, it is important to analyze several
studies related to navigation and memory made in animals and humans’ brain, performed
by notable scientists, some of them winners of the 2014 Nobel Prize in
Medicine: John O Keefe (University College/London), May-Britt Moser and Edvard
Moser/University of Oslo, Norway) and others. Moreover, Jeff Hawkins
(Numenta/University of California), is clearly convinced that these new
discoveries will soon be applied to the improvement of A.I., expecting to have in
the near future robots with autonomous memory and navigation (to climb, to fly,
to walk, to run), systems. We are talking about brain’s codes of network
navigation (grid codes), to be
implanted in robots, making them more flexible, creative, and powerful. The evidence
related to internal brain’s grid codes sustain that thesecodify
abstract knowledge using spatial representations, similar to how physical
spaces are mapped. According to Kim Stachenfeld (Deep Mind), memory and
navigation have a physical base located in the hippocampus, being essential the
grid codes for both. Grid-codes are a form of spatial brain representation,
which helps to navigate through visual, sonic and other areas full of abstract
concepts. In this regard, 2 types of cells have been discovered in the
hippocampus: a) one related to two-dimensional (2D) space navigation and
b) one related to memory. John O'Keefe discovered in rat brains: place cells (position cells/their visible
discharges indicate their current specific position), which together create a
total spatial map. By changing the experimental rats from place, the place
cells perform re-mapping. The hippocampus remaps the area, creating and storing
cognitive maps. For their part: May-Britt Moser and Edvard Moser, studied the
entorhino cortex, the first to deteriorate (navigation and memory areas), in
Alzheimer's disease. For Mosers the grid code is a kind of metric or coordinate
system, useful for physical and abstract brain navigation, having been found in
humans (using f-MRI), an hexadirectional signal, with properties emanated from
grid codes, previously identified in physical navigation tasks. Jacob Bellmund
(Max Planck Institute/Leipzig and Kavli Institute for Systems
Neuroscience/Norway), believes that unlike place cells, grid cells do not
represent particular locations, but a navigation system independent of the
location (brain’s GPS). Each grid cell fire in regularly spaced positions
forming a hexagonal pattern, of the same size, in which each hexagon has 6
equilateral triangles. Grid cell fire each time the subject reaches the vertex
of any of these triangles. There are grid cells with larger or smaller hexagons
and together they are able to map any special position of the environment and
any particular location. Grid cells are responsible for the call: integration path. The grid network not
only sends a lot, but different types of information. György Buzsaki (NY,
University School of Medicine), says that the hexagonal system is a solution to
represent any structured relationship, from word meaning maps to maps of future
plans. In addition, the hippocampus contains place cells that sometimes behave as "time cells" activating in certain situations successive
moments of time, rather than successive positions in space. When the rats
remain in a constant place, the cells are activated in the hippocampus to trace
their temporal progression -in this case- some neurons are activated in the
first seconds and others shortly, thereafter, acting the time as a different
dimension in this equation; evidence of a codified system that only represents
time in the context of memories or experiences. On the other hand, scientists from
Princeton University discovered another potential dimension: sound, which
monitored brain activity in rats that pushed a lever to change the frequency of
one tone to adapt it to another that they had previously heard. The most recent
news regarding grid codes, argue that all physical and abstract knowledge can
be plotted with these codes. Recently other cells have been identified that
helpthe grid system: 1) head
direction cells that discharge when an animal points its head in a particular
direction 2) speed cells that indicate the frequency at which the
subjects move in the space 3) boundary cells that represent the location
of objects or people on the walls or edges not only of the physical space but
also on the edges of separate conceptual events mobilized in temporal
sequences. It is known that the grid code is less stable in the elderly, with
locations in these people not so efficient. It remains to be seen how grid cells
work in flying bats that navigate in 3D. Sure, the future is challenging in
this field.
GPS CEREBRAL
Algunos científicos creen que los objetivos
finales del desarrollo de la Inteligencia Artificial (A.I.) y -de los cerebros
robóticos- nunca alcanzaran la tesitura, sofisticación y creatividad de los
cerebros humanos. Frente a este desafío, los continuos descubrimientosen A.I. y neurociencia contradicen lo
anterior, indicando quesentimientos,
pasiones, ideas, la memoria y todo lo abstracto son procesos computables, robotizables. De modo que en los campos
mencionados, importaanalizar y relacionar prospectivamente diversos
estudios relacionados con la navegación y la memoriacerebral animal y humana,realizados por notables científicos, algunos de ellos
ganadores del Premio Nobel de Medicina 2014 : John O Keefe (University
College/London),May-Britt
Moser and Edvard Moser/Universidad de Oslo, Noruega)y, otros. Es más, Jeff Hawkins (Numenta/University of California), tiene el claro
convencimiento de que estos nuevos descubrimientos pronto serán aplicados al
mejoramiento de la A.I. Estamos hablando de códigos de navegación en red (grid codes), cerebrales a ser implantados
pronto en robots, tornándolos más flexibles, creativos, y poderosos al unificarse
las funciones de memoria y navegación. Los estudios referidos avalan la
eficiencia cerebral para codificar conocimientos
abstractos empleando representaciones espaciales, de forma similar a como se
mapean los espacios físicos. Según Kim Stachenfeld (Deep
Mind), la memoria y la navegación tienen una base física localizada en el hipocampo,
siendo los grid codes esenciales para ambas. Losgrid-codes son una forma de representación cerebral
espacial, que ayuda a navegar por áreas visuales, sónicasy
otras plenas de conceptosabstractos. Al
respecto se han descubiertoen el
hipocampo 2 tipos de células: a) una
relacionada con la navegación espacial bidimensional (2D) y b) otra relacionada con la memoria.John O’Keefe descubrió en cerebros de ratas: place cells (células de posición/descargas
visibles indican su posición especifica actual), las que juntas crean un mapa
espacial total. Al cambiar las ratas de experimentación de lugar, sus place cells realizan re-mapeo. El hipocampo remapea el área, creando
y almacenando mapas cognitivos. Por su
lado: May-Britt Moser y Edvard Moser, estudiaron
el córtex entorrino, el primero en deteriorarse (áreas denavegación ymemoria), en la enfermedad de Alzheimer. Para
los Mosers el código grid es una especie de sistema métrico o de coordenadas, útil
para la navegación cerebral física y abstracta, habiéndose encontrado en monos:
mezclas denavegación activa del
espacio visual y, en humanos (mediante f(MRI), una señal hexadirectional, con
propiedades emanadas de códigos grid, previamente
identificados en tareas de navegación física. Jacob Bellmund (Max Planck
Institute/Leipzig y The Kavli Institute for Systems Neuroscience/Norway), opina
que a diferencia de las place cells, las
grid cells no representan
localizaciones particulares; sino un sistema de navegación independiente de la localización
(GPS cerebral) Cada célula grid descarga en posiciones regularmente espaciadas formando
un patrón hexagonal, del mismo tamaño, en el que cada hexágono tiene 6 triángulos
equiláteros. A medida que uno camina,
una célula grid descarga cada vez que el sujetoalcanza el vértice de cualquiera
de estos triángulos. Existen conjuntos de
grid cells con hexágonos más grandes o pequeños y juntas son capaces de mapear
cualquier posición especial del medio ambiente y cualquier localización
particular.las células grid son las responsables
de la llamada: vía de integración.La red grid,
no solo envía mucha, sino diferentes tipos de información. György Buzsaki (NY, University
School of Medicine), dice que el sistema hexagonal es una solución para
representar cualquier relación estructurada, desde mapas de significados de
palabras hasta mapas de planes futuros.
Además, elhipocampocontieneplace cells que a veces se
comportan como “time cells” activándose en ciertas situaciones indicando momentos sucesivos del tiempo, más
que posiciones sucesivas en el espacio). Cuando las ratas permanecen en un
lugar en forma constante, las células se activan en el hipocampo para trazar su
progresión temporal: algunas neuronas se activan en los primeros segundos y
otras poco después, actuando el tiempo como una dimensión diferente en esta
ecuación; evidencia de un sistema codificado que únicamente representa al
tiempo en el contexto de memorias o experiencias.De otro lado, en la Princeton University se descubrió otra dimensión
potencial: el sonido, que monitoreaba la actividad cerebral en ratas que empujaban
una palanca para cambiar la frecuencia de un tono para adecuarlo a otroque ellas
habían escuchado previamente. Las noticias más recientes respecto a los
códigos grid, sostienen que todo el conocimiento físico y abstracto, puede ser
ploteado con estos códigos. Recientemente se han identificado otras célulasque ayudan en el sistema grid:1)
las células head direction que
descargan cuando un animal apunta su cabezaen una dirección particular 2) las células speed que que indican la frecuencia a la cual se mueven los sujetos
en el espacio 3) las células boundary que representan la localizaciónde objetos o personas enlas paredes o bordes no solo del espacio físicosino también en los bordes de eventos conceptuales separados
movilizándose en secuencias temporales.Aunque
faltan estudiar funciones adicionales de este sistema, se sabe que el código
grid es menos estable en ancianos, con localizaciones en estas personas no tan
eficientes. Queda por ver como trabajarían
las grid cells en murciélagos volando, que navegan en 3D.